The main conjecture of Iwasawa theory for elliptic curves with complex multiplication over abelian extensions at supersingular primes

نویسندگان

  • Byoung Du Kim
  • Jeehoon Park
  • Bei Zhang
چکیده

We develop the plus/minus p-Selmer group theory and plus/minus padic L-function theory for an elliptic curve E with complex multiplication over an abelian extension F of the imaginary quadratic field K given by the complex multiplication of E when p is a prime inert over K/Q (i.e. supersingular). As a result, we prove that the characteristic ideal of the Pontryagin dual of the plus/minus p-Selmer group of E over the cyclotomic Zp-extension of F is generated by the plus/minus p-adic Lfunction of E. This work is a generalization of [12], [14], and [15].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The main conjecture for CM elliptic curves at supersingular primes

At a prime of ordinary reduction, the Iwasawa “main conjecture” for elliptic curves relates a Selmer group to a p-adic L-function. In the supersingular case, the statement of the main conjecture is more complicated as neither the Selmer group nor the p-adic L-function is well-behaved. Recently Kobayashi discovered an equivalent formulation of the main conjecture at supersingular primes that is ...

متن کامل

2 2 N ov 2 00 4 Iwasawa Theory of Elliptic Curves at Supersingular Primes over Z p - extensions of Number Fields

In this paper, we make a study of the Iwasawa theory of an elliptic curve at a supersingular prime p along an arbitrary Zp-extension of a number field K in the case when p splits completely in K. Generalizing work of Kobayashi [8] and Perrin-Riou [16], we define restricted Selmer groups and λ ± , µ ±-invariants; we then derive asymptotic formulas describing the growth of the Selmer group in ter...

متن کامل

Iwasawa Theory of Elliptic Curves at Supersingular Primes over Zp-extensions of Number Fields

In this paper, we make a study of the Iwasawa theory of an elliptic curve at a supersingular prime p along an arbitrary Zp-extension of a number field K in the case when p splits completely in K. Generalizing work of Kobayashi [9] and Perrin-Riou [17], we define restricted Selmer groups and λ±, μ±-invariants; we then derive asymptotic formulas describing the growth of the Selmer group in terms ...

متن کامل

The anticyclotomic Main Conjecture for elliptic curves at supersingular primes

The Main Conjecture of Iwasawa theory for an elliptic curve E over Q and the anticyclotomic Zp-extension of an imaginary quadratic field K was studied in [BD2], in the case where p is a prime of ordinary reduction for E. Analogous results are formulated, and proved, in the case where p is a prime of supersingular reduction. The foundational study of supersingular main conjectures carried out by...

متن کامل

Elliptic Curves with Complex Multiplication and the Conjecture of Birch and Swinnerton-Dyer

1. Quick Review of Elliptic Curves 2 2. Elliptic Curves over C 4 3. Elliptic Curves over Local Fields 6 4. Elliptic Curves over Number Fields 12 5. Elliptic Curves with Complex Multiplication 15 6. Descent 22 7. Elliptic Units 27 8. Euler Systems 37 9. Bounding Ideal Class Groups 43 10. The Theorem of Coates and Wiles 47 11. Iwasawa Theory and the “Main Conjecture” 50 12. Computing the Selmer G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008